Уравнение окружности, проходящей через три заданные точки

Этот онлайн калькулятор выводит уравнение окружности, проходящей через три заданные точки

Эта страница существует благодаря следующим персонам

Timur

Timur

Mary Pichugina

Mary Pichugina

Создан: 2019-12-08 20:28:56, Последнее изменение: 2020-11-03 14:19:38

Этот онлайн-калькулятор находит окружность, проходящую через три заданные точки. Калькулятор находит центр, радиус и уравнение окружности, и строит окружность на графике. Методы, использованные для нахождения центра и радиуса окружности, описаны ниже под калькулятором.

PLANETCALC, Уравнение окружности, проходящей через три заданные точки

Уравнение окружности, проходящей через три заданные точки

Первая точка

Вторая точка

Третья точка

Знаков после запятой: 2

Центр

x
 
y
 
Радиус
 
Стандартное уравнение окружности
 
Общее уравнение окружности
 
Параметрическое уравнение окружности
 

Как найти окружность, проходящюю через три заданные точки

Давайте вспомним как выглядит уравнение окружности в стандартной форме:

x^2+y^2+2ax+2by+c=0

Так как все три точки принадлежат одной окружности, мы можем записать систему уравнений

x_1^2+y_1^2+2ax_1+2by_1+c=0\\x_2^2+y_2^2+2ax_2+2by_2+c=0\\x_3^2+y_3^2+2ax_3+2by_3+c=0

Значения (x_1, y_1), (x_2, y_2) и (x_3, y_3) мы знаем. Давайте сделаем подстановку с неизвестными переменнами a, b и c.

2x_1a+2y_1b+c + x_1^2+y_1^2+=0\\2x_2a+2y_2b+c+x_2^2+y_2^2=0\\2x_3a+2y_3b+c+x_3^2+y_3^2=0

Теперь у нас есть три линейных уравнения для трех неизвестных - составим систему уравнений соответствующую матричной форме:

\begin{bmatrix}2x_1 & 2y_1 & 1 \\2x_2 & 2y_2 & 1 \\2x_3 & 2y_3 & 1 \\\end{bmatrix} * \begin{bmatrix}a\\b\\c\\\end{bmatrix} = \begin{bmatrix}-(x_1^2+y_1^2)\\-(x_2^2+y_2^2)\\-(x_3^2+y_3^2)\\\end{bmatrix}

Мы можем решить эту систему уравнений, используя, к примеру, Гауссово исключение. (подробнее прочитать об этом можно здесь - Решение системы линейных алгебраических уравнений методом Гаусса ). "Нет решений" - означает, что точки коллинеарны и окружность через них провести нельзя.

Координаты центра окружность и ее радиус относится к подобному решению
x_c=-a\\y_c=-b\\R=\sqrt{x_c^2+y_c^2-c}

Зная центр и радиус, мы можем получить уравнение окружности, используя этот калькулятор - Уравнение окружности по заданному центру и радиусу в различных формах

Ссылка скопирована в буфер обмена
PLANETCALC, Уравнение окружности, проходящей через три заданные точки

Комментарии