homechevron_rightУчебаchevron_rightМатематикаchevron_rightГеометрия

Уравнение плоскости по трём точкам

Этот онлайн-калькулятор выводит общее уравнение плоскости по трем точкам

В математике, плоскость - это плоская, двумерная поверхность, которая простирается бесконечно далеко

Общее уравнение плоскости выглядит так:
ax+by+cz+d=0

Плоскость может быть проведена через три не коллинеарные точки ( точки не лежат на одной прямой). И калькулятор ниже может это сделать. Вы вводите координаты трех точек, и калькулятор вычисляет уравнение плоскости, проходящей через эти три точки. Как всегда, объяснения и теорию вы можете найти ниже под калькулятором.

PLANETCALC, Уравнение плоскости по трем точкам

Уравнение плоскости по трем точкам

Первая точка

Вторая точка

Третья точка

Уравнение плоскости
 

Плоскость, проходящая через три точки

Зная три точки плоскости, мы знаем, что они удовлетворяют уравнению плоскости. Мы можем выразить это математически:
ax_1+by_1+cz_1+d=0 \\ ax_2+by_2+cz_2+d=0 \\ ax_3+by_3+cz_3+d=0

Точки нам даны, и коэффициенты a, b, c, d нужно найти. Это значит, что мы составляем систему из трех линейных уравнений с четырьмя переменными a, b, c, d:

x_1a+y_1b+z_1c+d=0 \\ x_2a+y_2b+z_2c+d=0 \\ x_3a+y_3b+z_3c+d=0

Или в матричной форме это будет выглядеть так:
\begin{array}{|cccc|}  x_1 &  y_1 & z_1 & 1 \\  x_2 &  y_2 & z_2 & 1 \\ x_3 &  y_3 & z_3 & 1\\ \end{array} * \begin{array}{|c|}  a \\ b \\ c \\ d \\ \end{array} = \begin{array}{|c|}  0 \\ 0 \\ 0 \\ \end{array}

Хоть мы и имеем только три уравнения для трех неизвестных, это означает, что система уравнений имеет бесконечное множество решений; тем не менее мы все еще можем использовать этот калькулятор - Решение системы линейных алгебраических уравнений методом Гаусса для получения решения в стандартной форме с неизвестными переменнами ( это значит, что переменные могу принимать любое значение).

В нашем случае, мы имеет только одну независимую переменную. Если все координаты - целые числа, то калькулятор выбирает значение неизвестной переменной так, чтобы оно было наименьшим общим кратным (НОК) из всех знаменателей с другими коэффициентами, чтобы избавиться от фракций в ответе. Если координаты - не целые числа, значение независимой переменной нужно принять за 1.

Creative Commons Attribution/Share-Alike License 3.0 (Unported) PLANETCALC, Уравнение плоскости по трём точкам

Комментарии