homechevron_rightРаботаchevron_rightИнженерные

Предел функции в точке

Калькулятор вычисляет предел функции в заданной точке численным методом. Хорошо вычисляет предел функции, при х, приближающемуся к определенному значению. Не пригоден для вычисления пределов, когда х стремится к бесконечности.

Creative Commons Attribution/Share-Alike License 3.0 (Unported)

Этот материал распространяется на условиях лицензии Creative Commons Attribution/Share-Alike License 3.0 (Unported). Это означает, что вы можете размещать этот контент на своем сайте или создавать на его основе собственный (в том числе и в коммерческих целях), при условии сохранения оригинального лицензионного соглашения. Кроме того, Вы должны отметить автора этой работы, путем размещения HTML ссылки на оригинал работы https://planetcalc.ru/695/. Пожалуйста оставьте без изменения все ссылки на других авторов данной работы или работы, на основе которой создана данная работа (если таковые имеются в спроводительном тексте).

По многочисленным просьбам наших пользователей публикуем калькулятор вычисляющий предел функции одного аргумента в заданной точке. Калькулятор вычисляет предел функции приближенным численным методом, что не позволяет нам вычислить предел в том случае, когда аргумент стремится к бесконечности. Подробности, как обычно, следуют за калькулятором.

PLANETCALC, Предел функции в точке — численный метод.

Предел функции в точке — численный метод.

Допустимые операции: + - / * ^ Константы: pi Функции: sin cosec cos tg ctg sech sec arcsin arccosec arccos arctg arcctg arcsec exp lb lg ln versin vercos haversin exsec excsc sqrt sh ch th cth csch
Знаков после запятой: 2
Функция
 
Предел функции в точке
 

Определение

Число A называется пределом функции y=f(x), при х->x0, если для всех значений x, достаточно мало отличающихся от числа x0, соответствующие значения функции f(x) как угодно мало отличаются от числа A.

\lim_{x \to x_0}f\left(x\right)=A

На этом определении предела функции и основана работа нашего калькулятора.

Для вычисления предела мы попросту вычисляем значение функции в точке незначительно отличающейся от заданной. Говоря незначительно, я имею в виду величину предельно мало отличающуюся от заданной точки, которая только возможна для нашей вычислительной системы. Для получения такой предельно малой величины мы берем некоторую малую величину и уменьшаем ее методом половинного деления до тех пор, пока значение функции в точке, отличающейся от заданной на эту малую величину, определено.

В результате предпоследнего вычисления мы получаем предел нашей функции.

Метод требует наличия некоторых вычислительных мощностей, потому что значение функции вычисляется несколько сотен раз. Но так как все вычисления в наших калькуляторах делаются на компьютере пользователя, заботу о наличии этих мощностей мы перекладываем на ваши плечи, дорогие посетители нашего сайта :)

Creative Commons Attribution/Share-Alike License 3.0 (Unported) PLANETCALC, Предел функции в точке

Комментарии