Производная функции

Вычисляет производную заданной функции.

Эта страница существует благодаря следующим персонам

Anton

Создан: 2011-01-07 16:56:43, Последнее изменение: 2020-11-03 14:19:28
Creative Commons Attribution/Share-Alike License 3.0 (Unported)

Этот материал распространяется на условиях лицензии Creative Commons Attribution/Share-Alike License 3.0 (Unported). Это означает, что вы можете размещать этот контент на своем сайте или создавать на его основе собственный (в том числе и в коммерческих целях), при условии сохранения оригинального лицензионного соглашения. Кроме того, Вы должны отметить автора этой работы, путем размещения HTML ссылки на оригинал работы https://planetcalc.ru/675/. Пожалуйста оставьте без изменения все ссылки на других авторов данной работы или работы, на основе которой создана данная работа (если таковые имеются в спроводительном тексте).

Данный калькулятор вычисляет производную функции и затем упрощает ее.
В поле функция введите математическое выражение с переменной x, в выражении используйте стандартные операции + сложение, - вычитание, / деление, * умножение, ^ — возведение в степень, а также математические функции. Полный синтаксис смотрите ниже.
Упрощение полученной производной может занять некоторое время, для сложных функций — весьма продолжительное. Если ждать до конца нет сил — нажмите кнопку остановить. У меня получался достаточно простой вариант уже после 10-15 секунд работы алгоритма упрощения.

Калькулятор производных

PLANETCALC, Производная функции

Производная функции

Допустимые операции: + - / * ^ Константы: pi Функции: sin cosec cos tg ctg sech sec arcsin arccosec arccos arctg arcctg arcsec exp lb lg ln versin vercos haversin exsec excsc sqrt sh ch th cth csch
Функция
 
Производная функции
 
Показать шаги вычисления производной и упрощения формулы
Файл очень большой, при загрузке и создании может наблюдаться торможение браузера.

Синтаксис описания формул

В описании функции допускается использование одной переменной (обозначается как x), скобок, числа пи (pi), экспоненты (e), математических операций: + — сложение, - — вычитание, * — умножение, / — деление, ^ — возведение в степень.
Допускаются также следующие функции: sqrt — квадратный корень, exp — e в указанной степени, lb — логарифм по основанию 2, lg — логарифм по основанию 10, ln — натуральный логарифм (по основанию e), sin — синус, cos — косинус, tg — тангенс, ctg — котангенс, sec — секанс, cosec — косеканс, arcsin — арксинус, arccos — арккосинус, arctg — арктангенс, arcctg — арккотангенс, arcsec — арксеканс, arccosec — арккосеканс, versin — версинус, vercos — коверсинус, haversin — гаверсинус, exsec— экссеканс, excsc — экскосеканс, sh — гиперболический синус, ch — гиперболический косинус, th — гиперболический тангенс, cth — гиперболический котангенс, sech — гиперболический секанс, csch — гиперболический косеканс, abs — абсолютное значение (модуль), sgn — сигнум (знак), logP — логарифм по основанию P, например log7(x) — логарифм по основанию 7, rootP — корень степени P, например root3(x) — кубический корень.

PLANETCALC, Таблица синтаксиса математических выражений

Таблица синтаксиса математических выражений

Файл очень большой, при загрузке и создании может наблюдаться торможение браузера.

Вычисление производной

Вычисление производной — дело нехитрое, достаточно знать несколько простых правил и формулы дифференцирования простых функций; сложнее в этом онлайн калькуляторе было сделать интерпретатор математических выражений и алгоритм упрощения полученного результата, но об этом как-нибудь в другой раз...

Правила дифференцирования

1) производная суммы:
(u+v+...+w)'=u'+v'+...+w'
2) производная произведения:
(uv)'=u'v+v'u
3) производная частного:
(\frac{u}{v})'=\frac{u'v-v'u}{v^2}
4) производная сложной функции равна произведению производных:
y=f(u), u=\phi(x), y'=f'(u)\phi'(x)

Таблица производных

Производная степенной функции:
(x^{n})'=nx^{n-1}
Производная показательной функции:
(a^{x})'=a^{x}\ln(a)
Производная экспонециальной функции:
(e^{x})'=e^{x}
Производная логарифмической функции:
(\ln(x))'=\frac{1}{x}
Производные тригонометрических функций:
(\sin{x})'=\cos{x},
(\cos(x))'=-\sin(x),
(\tan(x))'=\frac{1}{\cos^2(x)},
(\cot(x))'=-\frac{1}{\sin^2(x)}
Производные обратных тригонометрических функций:
(\arcsin(x))'=\frac{1}{\sqrt{1-x^2}},
(\arccos(x))'=-\frac{1}{\sqrt{1-x^2}},
(arctg(x))'=\frac{1}{1+x^2},
(arcctg(x))'=-\frac{1}{1+x^2}
Производные гиперболических функций:
(sh(x))' = ch(x)
(ch(x))' = sh(x)
(th(x))' = -th(x)sech(x)
(cth(x))' = -csch^2(x)

Ссылка скопирована в буфер обмена
PLANETCALC, Производная функции

Комментарии