Обратный элемент в кольце по модулю
Калькулятор вычисляет обратный элемент по модулю.
Этот материал распространяется на условиях лицензии Creative Commons Attribution/Share-Alike License 3.0 (Unported). Это означает, что вы можете размещать этот контент на своем сайте или создавать на его основе собственный (в том числе и в коммерческих целях), при условии сохранения оригинального лицензионного соглашения. Кроме того, Вы должны отметить автора этой работы, путем размещения HTML ссылки на оригинал работы https://planetcalc.ru/3311/. Пожалуйста оставьте без изменения все ссылки на других авторов данной работы или работы, на основе которой создана данная работа (если таковые имеются в спроводительном тексте).
Калькулятор для вычисления обратного элемента по модулю ниже, теория под ним.
Обратным к числу a по модулю m называется такое число b, что:
,
Обратный элемент обозначают как .
Для нуля обратного элемента не существует никогда, для остальных же элементов обратный элемент может как существовать, так и нет.
Утверждается, что обратный элемент существует только для тех элементов a, которые взаимно просты с модулем m.
Для нахождения обратного элемента по модулю можно использовать Расширенный алгоритм Евклида.
Для того, чтобы показать это, рассмотрим следующее уравнение:
Это линейное диофантово уравнение с двумя переменными, см. Линейные диофантовы уравнения с двумя переменными. Посколько единица может делиться только на единицу, то уравнение имеет решение только если .
Решение можно найти с помощью расширенного алгоритма Евклида. При этом, если мы возьмём от обеих частей уравнения остаток по модулю m, то получим:
Таким образом, найденное x и будет являться обратным к a.
Комментарии