Получить код ссылки
Внешний вид
Пример
УчебаМатематикаГеометрия

Сколько малых одинаковых окружностей радиуса r можно вписать в большую окружность радиуса R

Этот калькулятор оценивает число малых окружностей заданного радиуса r можно разместить внутри большой окружности заданного радиуса R.
Timur2017-10-24 04:04:45

Этот калькулятор выводит максимальное число малых окружностей заданного радиуса r можно разместить внутри большой окружности заданного радиуса R. Например это могут быть малые трубы внутри большой, провода в кабель канале, круги, вырезаемые из круговой же заготовки и так далее.

Вы можете подумать, что для решения такой задачи должна быть выведена формула, но на самом деле это не так - формулы нет. Эта задача относится к классу оптимизационных задач, а точнее, задач упаковки. Эта задача известна как Упаковка кругов в круге. Упаковка кругов в круге — это двумерная задача упаковки, целью которой является упаковка единичных кругов в как можно меньший круг. См. Упаковка кругов в круге.

Для этой задачи найденное решение еще и должно быть проанализировано на оптимальность. Статья в википедии по ссылке выше приводит первые 20 решений (иными словами, приводит минимальные радиусы больших окружностей вмещающих заданное число единичных окружностей. Между прочим, по умолчанию входные параметры калькулятора дают ответ 11 кругов, что соответствует следующей диаграмме:

http://en.wikipedia.org/wiki/File:Disk_pack11.svg

Хорошей новостью является то, что есть проект в интернете, целиком посвященный задачам упаковки - сайт Packomania. На сегодняшний день он содержит все найденные решения, автор сайта, Экард Спехт (Eckard Specht), сам участвует в поиске решений, и большинство решений, на самом деле найдены им. Оттуда можно взять соотношения r к R для решений, позволяющих упаковать от 1 до 2600 окружностей внутри большой, с графическими диаграммами решения.

Соотношения r/R, приведенные на сайте и использует калькулятор ниже для поиска оптимального решения. Если соотношение не попадает в диапазон известных решений, калькулятор выдает ошибку.

Сколько малых одинаковых окружностей радиуса r можно вписать в большую окружность радиуса RCreative Commons Attribution/Share-Alike License 3.0 (Unported)
 
 

Комментарии